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THE EFFECTIVE FIELD METHOD IN LINEAR PROBLEMS 
OF STATICS OF COMPOSITE MEDIA* 

S.K. WAUN 

A composite material consisting of a homogeneous matrix containingarandom,spatially 
homogeneous set of ellipsoidal inclusions with different physical and mechanical 
properties is investigated. Static are studied (suchas electric, elastic,station- 
ary temperature, etc.), induced in such a medium by the action of various specified 
external fields. The problem consists of determining the statistical moments of the 
random tensor-type functions of the flux density and field strength inthe composite 
material in question. The problem of describing many importantphysicalandmechan- 
ical properties of the heterogeneous materials can be reduced to that of solvingthe 
above problem. 

An approximate method of solution is proposed, based on replacingthelocalexternal fields 
containing single inclusions by the effective field of prescribed structure. In the case of 
a known effective field which is assumed to vary randomly from one inclusion to the next, the 
flux density and field intensity tensors in an inhomogeneous medium are restored over this 
field uniquely. The solution of the stochastic system in question is reduced to construction 
of the statistical moments of the effective field. It is shown that moments of differentorders 
are connected to each other my means of an infinite sequence of interlinked equations. Intro- 
duction of additional assumptions concerning the statistical properties of the effective field, 
makes it possible to truncate the chain and thus obtain a closed system of equations for 
several first order moments. Expressions are obtained for the first two statistical moments 
of the unknown random functions in terms of the corresponding moments of the effective field. 

An operator connecting the mathematical expectations of the flux density and field 
strength tensors in a composite medium (operator of effective properties) is studied. In the 
general case the operator is nonlocal. It follows therefore that a homogeneous medium usedto 
replace the initial inhomogeneous material in the course of determining the mean values of the 
unknown fields in terms of the given external field, has the property of spatial dispersion. 
In the case of sufficiently smooth external fields the effective properties operator can be 
approximated by a differential operator of finite order. Moreover, for an elastic inhomogen- 
eous medium the equations satisfied by the averaged field potential (displacement vector) CO- 
incide, in the first approximation, with the equations of one of the known versions of the 
couple stress theory of elasticity. The approach proposed here is a developmentofthe method 
of self-consistent field which was used in /l-7/ to construct the effective elastic constants 
for composite materials. 

1. Formulation of the problem. Let us consider a composite material consisting of 

homogeneous components, namely the matrix and a set of inclusions occupyingasystemofisolated 
regions V, the characteristic functions of which are III;(*), k = 1.2,. .* Let the Properties of 
the medium at any point s(zl, s,,z3) be given by the tensor function 

c (5) = co + 8 C:k’Vk (5) (1.1) 

where co is the tensor of matrix properties and C,+C,c"l is the corresponding tensor for the 

,$-th inclusion. The actual character of the tensor c(x)may vary. In the problem of 

electric conductivity it becomes a bivalent tensor of the electric conductivity properties of 
the medium, in the case of a stationary temperature field the components of the tensor c (3 

will be the heat conductivity coefficients, and in the problem of elasticity c(r) becomes a 

tetravalent tensor of the moduli of elasticity. 
A system of equations describing a static field with scalar potential G in an inhomogene- 

ous medium will, in a number of important cases, have the form 
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diva(x) = q (z)? IJ (r) = c (z)*e (4, 8 (4 = vu (4 (1.2) 

where V denote the grad operation, s is the field strength, a is the flux density vector and 
q is the volume field sourcesdensity. If u is a vector potential, then the system (1.2) in 

which the operator V must be replaced by a symmetrized gradient, describes the displacement 

vector fields u(z), stress c(z) and deformation E(Z) tensor fields in an inhomogeneous 

elastic material. A dot in (1.2) denotes the tensor contraction over one (scalar potentials) 
or two (vector potential) indices. Without pausing to consider the edge effects we assume 

that the medium occupies the whole space. We denote by co(s) and e,(z) the flux density and 
external field strength tensors, respectively. Such a field (with potential u,(z)) could ex- 
ist in a homogeneous medium with properties cg , with the volume sources and conditions at 
infinity given. 

Let the sets of regions V, and tensors c$k) in (1.1) be random, With all statistical 

moments of the random function c(z) known. Then the fields o(z) and E(z) induced in the in- 
homogeneous medium by a specified external field will also be random. The main problem dealt 

with in this paper consists of constructing the statistical moments for these random fields. 
Let us pass from the differential equations (1.2) to an equivalent system of integral equat- 
ions for the functions o(x) and s (z). The equations can be written in the form /%,9/ 

cr (5) = a0 (5) + j s (x - x’).m (2’) dx’ (1.3) 

E (x) = E,, (2) + 1 K (z - t’)~c,.m (5’) dz’ (1.4) 

m(5)=XM(5), m@)(x)= B:""~U(X)V,(Z) (1.5) k 
BP’ = (co + Cl )- - c;’ @I 1 

and the integration here is carried out over the whole space. 
The kernels S(s)and K (S)of the integral operators S and K in (1.3) and (1.4) are given 

in temls of the second derivatives of the Green's function G(z)of the homogeneous medium co 9 
by the formulas 

K (.r) = -VVG (z), S (x) = c,.K (x).c, - co6 (x) (1.6) 

(V*s~VG(x) = -4 (z)) 

where &(&is the delta function. From this it follows that K(.z)and S(x)are homogeneous gener- 
alized third degree functions. The operators S and K can be regarded as pseudodifferential 
/lo/, and their expressions s(k) and K(k).c, (Fourier transforms of the functions S(r) and 
K(s).c,) are homoqeneous functions of zero degree in k. The action of such operators, e.g. 
of the operator S on the square integrable in R3 functions is described by a relation of the 
foml 

(Sm)(z)=(2n}-*J~ (k)vm(k) esp E-i (k+r)ldk 

where m(k) is the Fourier transform of the function m(x). 

Below we shall assume that the set of inclusions is unifomlly distributed over the whole 
space. If at the same time the external field co(x) (Q(Z)) is a bounded oscillatory function, 
then the tensors c(z), a(z) and m(z) in (1.3) and (1.4) will be non-finite random oscillatory 
functions. The integrals expressing the action of the operators S and K on therealizations 
of such functions, formally diverge at zero and infinity. 

Let us consider a scheme for constructing the formulas of regular representation of the 
operators s and Kon thefunctions of the type shown. The functions can be represented with 
the accuracy of up to the square integrable in R3 temls, in the form of exponential series 
containing, in general, mutually incommensurable wave vectors 

Here m, is the constant component of the function !n(s),and the coefficients srj are such that 
the series in the above expression converges. 

Using the property of contraction we can show that the action of the operators S and K 
on the function exp li(k,.r)l can be reduced to multiplying this function by constant multipliers 
s (kj) and K (kj).c,,respectively. Since S(k) and K(k) are homogeneous functionsofzero degree 
the multipliers are uniquely defined and uniformly bounded for all k(k, f 0). 
operator S(K) acts on the series in (1.7), 

Thus, when the 

with coefficients S(kj).mj (K(k,)- 
the latter is transformed into an analogous series 

Co*mj) which converges absolutely, provided that the parent 
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series also converges absolutely. 
It remains to determine the action of the operators s and Kon the constallt 111,) in ihe 

k-space of Fourier transformations this corresponds to multiplying the homogeneous functions 
S &land K (k).c, by the delta function concentrated at zero, and this operation is obviously 

not single-valued. It can be shown that no "natural regularization" of the operators s andK 
over the constants exists, and the result depends on which of the external fields, the flux 
density O,,(z)or field strength E,, (2) in the problem is fixed. In particular, if we fix the 
external flux density, then the following relations hold /5,7/: 

J s (,r _ z').,n,&' = 0, S’K (.z - z’).c,.m,ds’ == tlio !I.81 

Next we pass to the problem of constructing the statistical moments of the solution of the 
system (1.3), (1.4). 

2. Effective field. Let US fix one of the typical realizations of the random set of 
inclusions, and consider any one inclusion with index i. We denote by (T, (r)the local exter- 
nal field containing the i-th inclusion. In the region Vi this field is composed of the 

external field Go(J) and a field generated by the neighboring inclusions. The expression for 

3, (5) fellows from (1.3) and has the form 

Ei (k) = (To@) f ,rl S,S(J-_').rn(k)(5')d5', XEl'i (2.i) 

where the functions m@)(z) are given by (1.5). From the structure of equation (1.3) it fol- 

lows that the functions m(';)(X) depend only on the value of the field cTk (r) in V,, as well 

as on the properties and form of the It-th inclusion. 

Let us assume that the solution of the problem for a single k- th inclusion in an arbit- 

rary external fieldisknown. This implies that the explicit form of the relation n@)(r,?&) 

which can be written as 
m(k) (I, (Jk) = (P&) (5) V, (5) 

(2.2) 

is also known. Here the linear operator Pk is determined from the solution of the problem for 
an isolated k- th inhomogeneity, and is assumed known. Substituting (2.2) into (2.1) we 

obtain a system of equations satisfied by the fields 5, (x) in a medium with mutually inter- 

acting inclusions 

E,(z)= 00 (5) + z: s S(5- 5')(PXak)(x')Vk(r')dx' (2.3) 
fC+ti 

ZEP1, i=l,2,... 

If the functions &Jr) are obtained from the solution of this system, then the fields U(r) and 

e(z) sought will be uniquely determined from the relations (1.3) and (1.43 in which the func- 

tions m@)(5) assume the form (2.2). Thus for the given operators P, the functions Ck (x) 
represent the principal unknowns of the problem. 

Let V = UV, be a region occupied by the inclusions. Fixing an arbitrary point 5,, E 1' 

we define the region VXO by the relation 

v*,= u I/,, QEVi (2.41 
kiri 

and denote the characteristic functions (with argument 5) of the regions V and V, by V(Z) 

and V(Z,;Z), respectively. We introduce the field a(.r)coinci in r/, with &(r),and a linear 

operator P such that the following relations hold: 

(P@(Z)I/'(rj =F (Pkak) @) vk (') 
(2.5) 

(P~)(Z)li(r,;r)= kzi(P,&)(x) vk(s)~ 50 =', 

Using the notation given we can write the system (2. 3) in the form of a single equation for 

the field a (Zj in region V 

5 (x) = u. (x) + s S (x - z').(PZ) (5') V (5; 5') dx', z E V (2.6) 

If the set of inclusions is random, then E(x)is a random function. The problem of construct- 

ing the statistical moments Z(X) reduces to solving the problem of mutual interaction between 

a number of inclusions, and just admits the exact solution. To make the problem more acces- 

sible, we introduce the following simplifying assumptions (hypotheses of the effective field 

method). 
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HI) The field C(.z) has the same structure in any region occupied by the inclusions. In 

what follows we shall assume that the dependence of G(x) on the coordinates has the form of 

a polynomial in every region V, . The degrees of these polynomials are the same for all in- 

clusions and the coefficients vary randomly from one inclusion to the next. 

W,) The values of the random function O(z) at the points of the region Vk are statistic- 

ally independent of the properties of the inclusions occupying the region, and of the geo- 

metrical characteristics of the region. The idea behind the hypothesis Hd is that the local 

external field in which the arbitrary inclusion is present,is assumedtobeweakly dependent on 

the form and properties of each separate inclusion, but is determinedbythe integralcharacter- 

istics of the whole random set of inhomogeneities. 

In what follows we shall assume that all inclusions are ellipsoidal. Then, fromhypothesis 

H, and solution of the problem of isolated ellipsoidal inhomogeneity in a polynomial external 

field, it follows /9/ that the field a(z) within the k -th inclusion (k is arbitrary) (and 

hence the function m (k)(x,&) in(2.2)) is a polynomial of the same degree as the local external 

field C, (I). In particular, if the field a(r) is assumed constant in the regions V,, tiien 

the operator P in (2.5) represents a multiplication by the function P"(S) which is constant 
in every region V,, i.e. 

(Pz)(s) =P(z).E(z), 5 E V (2.7) 

P"(x)=P,"=B, .( @) 1 _ D,. @')-', a(z) = 3, 
(2.8) 

when XEV~, k=l,2,... 

Here 1 is a bivalent unit tensor, and the constant tensor Dt is defined by 

4 = & s S (a;‘k) dQ 
n, 

(2.9) 

where S(k) is the symbol of the operator S, n, is the surface of a unit sphere in the k- th 
space and +-I is a linear transformation transforming the ellipsoid V, into a unit sphere. 
Substituting (2.7) into (2.6) we arrive at the following expression for the field T?(X) in v: 

3 (4 = u,J (x) + j s (5 - x’).PD (x’).E (5’) V(x; 5’) d.?, 2 E v (2.10) 

If the assumption of the constancy of the field E(X) in the regions Vk is confirmed, then 
the solutions of (2.6) and (2.10) coincide. 

Let us now assume that the field Z(I) is linear in Vkoccupied by the inclusions (Sk is 
the center of the region V,) 

(2.111 

Here and henceforth the co- and contravariant components of the tensors on an arbitraryoblique 

-angled basis will be identified by the lower and upper Greek indices, respectively. The same 

lower and upper indices will denote summation. Since the linear external field induces a 
linear field inside every ellipsoidal heterogeneity /9/, therefore the operator Pappearing 

in (2.6) acts on ij(x) according to the formula 

(=)"@) =(Pk")e"~!? + (Q&?r!?(x -&, I 6?Vk, k = 1, 2, . . . (2.12) 

Here Pko has the form (2.8) and the constant tensor Q,,is given, in the absence of the volume 

sources of external field, in the form 

(2.13) 

where I is a unit four-valent tensor and 51, denotes, as in (2.91, the surface of a unit sphere 
in the k-space. Taking into account the fact that the constant tensors & and rh in (2.11) 
can be expressed in terms of the linear tensors in the region V, and the field ;s(x) 

?+,a =a=(x)-(V~5'x(s))(r - &)fi, r"b =VW(5), 5 E v, 
(2.14) 

we conclude that the equation (2.6) for 5 (r)will become, assuming that the hypothesis (2.11) 
holds, 

9 (5) = &p (5) + s w (x - x’) [ P;A (5’) 5” (x’) I 

P'e,,;*y (z') (VW (5')) Hv (x’)] V (x; x’) dx’, x E 1. 
(2.15) 
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The functions p'(S) and H (5)are defined in every region V, by the relations (fi,, I:: t-ii! 
Kronecker delta) 

%Ql(s) = (Q&&I - (PsO)afl&l: (L.lC i 
H”(x) = H,v (x) = (x - &)V, x E V,, k = 1,2, . 

and equation (2.15) is already inteqrodifferential w:th respect to (J(I). 

Approximating the field Z(z)in the regions Irk with the second degree polynomials we 
arrive, in the same manner, at an inteqrodifferential equation containing second order deri- 
vatives in ij (5). We shall continue to call effective the field i?(z) satisfyinganequation 

of the type (2. lo), (2.15) or other analogous expressions. We shall also call (2.10) a zero 

order equation. and (2.15) a first order equation for the effective field. 

3. General scheme for constructing the statistical moments of the solution. 
We first consider a problem of constructing the statistical moments of the effective field 
?j (x). Let us denote by iiF (z,, .r$, ., fn) the n-point moment of effective field representing 
the average value of the tensor product c?~~(z~)+(I~)... can (z,,), under the condition that the 
points 2,, x2, . . ., x, lie in the region Voccupied by -he inclusions. In particular, the mathe- 
matical expectation and two-point moment of effective field represent conditional averages of 
the form 

(a)a(zr)= (3"(z)/ I), (~*)“~(I,,~r?)= (o”(.xl)o”(r?)l .T1,X*’ ! 3.1) 

where <. 1 XI, 5,, . ., xn> denotes a mean value under tr.e condition that X,.X?,.. .,.rn c” 1’. 
At this point we shall restrict ourselves to considering the zero order equations for 

effective field (2.10). We construct the mathematical expectation G'(X) by averaqingbothsides 

of (2.10) over the ensemble of random set of inclusions under the condition that 2‘tE V: 

(a (s)l x> = o. (x) + i s (x - x’),(P’(.r’).a (,T’) I’(x; s’)/x)ds 
(3.2) 

The point 5 is assumed fixed, therefore S(z - 5') is a determinate kernel. Using the hypo- 

thesis Hz of Sect.2 stating that the field G(x) is statistically independent in the region 

Vk of the geometrical characteristics of the latter and the properties of the k-th inclus- 

ion, we can write the mean appearing in the inteqrand of (3.2) in the form of the following 

product: 
(P” (5’).E (z’) v (5; I’) 1 z> = (P” (5’) v (z.; 5’) 1 z). 
(5 (d) 1 x’; z> (3.3) 

where <0(5') 1 I’; x)denotes an average value under the condition that .Z'E I'. z E I;,.. which is 
clearly different from a'(z). If the properties of rhe inclusions are statistically independ- 

ent of the geometry and relative distribution of the regions V,. then the first right com- 

ultiplier in (3.3) can be written in the form 

(P" (5') V (G X') I .z) = P”$ (5, z’), P” = (P” (2) I s)=(Pko)R (3.4) 

The right-hand side expressionin thelast equation depicts the average value of the tensor Pk" 

of the form (2.8) over the ensemble of inclusions. :he scalar function 7#((5,z') in (3.4) is a 

conditional mean of the form 

* (5, 5') = <V(Z; 5') 1 S) (3.5) 

By virtue of the definition (2.4) of the region V, the above function is equal to zero when 

z =.r'. If the set of inclusions is spatially homogeneous, then $ depends only on the differ- 

ence 5 -I'. When 15 -x' I--t 00 , the correlation in t%e distribution of inclusions vanishes and 

we have 
<V(5; 5') I z > + <v (I’)> = .P 

where P denotes the concentration of the inclusions. For an isotropic set of inclusions Q(X) 

depends only on )z I. 
AII example of a function satisfying the above conditions is 

l# (*) = p (, _ ,-1x1/0! (3.6) 

where the parameter P denotes the radius of correlation of the random set of inclusions. A 

conditional mean $@,I') can be constructed for concrete stochastic sets of inclusions usinq 

the methods of geometrical theory of probability /ll . Below we shall assume that the form 

of the function II, and of the more complicated conditional means of the function V (5; x’) are 

both known. 
We construct the second right comultiplier in (3.3) (ir(z') IS’; Z> by averaging both sides 

of the equation (2.10) with condition so V,S,E V, , and using once again the hypothesis H,. 

This yields the expressions for the means c(s) 1 x> and G(x) 1 x; s,) in the form 
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<a (2) 1 s> = u. (x) + 1 s (I - s’)*P”.<r (5’) I s’; r> Ip (5, z’)dt (3.7) 

(F (x) 12; x1> = 0, (5) + Js (5 - x’).PO.<iT (I’) I x’; x, 21). 
(V (5; x’) I x; 51 )az’ 

(3.8) 

where fi (2') 1 s’; s,q) is a mean under the condition x' E V, r~ V,,I,E V, , different from 

<7? (5') I s'; I>. Thus we obtain a sequence of equations for the conditional means of the func- 

tion a (2). To close this sequence we must bring in additional assumptions concerning the 

statistical properties of the effective field. The simplest assumption is represented by an 

analog of the so-called "quasicrystalline approximation" /12,13/ 

(a (x’) I s’; x) = <a (x’) 1 s’> = 5’ (5’) (3.9) 

We assume here that the mean value of the effective field coincides at the point 2' with the 

value averaged over the set of heterogeneities for which the point xlies within one of the 

inclusions. This, together with (3.7), yields a closed equation for the mathematical expecta- 

tion of the effective field 

c'(r) = a, (5) + 1 s,(r - s').P"*? (x') dx'; S, (z) = 

s (2) $p-(s) 
(3.10) 

Solving this equation for a'(z) we obtain 

a1 (x) = (AUJ (x) 

where his a pseudodifferential operator the symbol of which is of the form (S*(k) is 

Fourier transform of S,(x)) 

A (k) = (1 - s, (k).Py 

The following approximation for Z'(z) is obtained by truncating the chain in (3.8) I 

help of the assumption 

3.11) 

the 

3.12) 

with 

<c 1x’) 1 2’; I, x1> = e (x’) 1 s’; Xl> = @ WV 51) (3.13) 

The function @(.r',z,) represents the mean value of the field c at the point s'E V under the 

condition that an inclusion is present at the point X&E V,,. The function characterizes the 
pair-wise relationship in a system of interacting inclusions. Clearly @ (z', zl) -+ 01(5') as 

IX'-Zzll'co. Equation for @((x;s,) follows from (3.8), (3.13) and has the form 

@ (5, x1) = so (5) + JS (x - z').p".D (x', x1)x (V(s; 5’) I z; z,)dz’ (3.14 

To construct the second moment of effective field ?(r~,z~) we tensor-multiply both parts of 

(2.10) by ir(r2) and average the result under the condition that tl,z2E V 

G2 (x1* 4 = &I (x1) G (x2) I 517 x*> + 5 s ( .q - z’)(P” (d).(T (cd) 0 (z,) V (x1; 5’) I I,, x2) dx’ (3.15 

The averaged tern) in the integrand can be written, by virtue of the hypothesis H, , in the 

form <p" (r').??(z')7i (5J V(s,; x') I Xl, 5*) = 
P”.<TI (I’) a (x,) Ix’, x2; 5*><v (s,; z’) III. .G> 

Using now an assumption of the type (3.9), (3.13) 

G (x') 0 (52) I I’, s,; Xl> = (Z (clz’) Ti (z,) I 5’, x2) := 3* (2.‘. x2) (3.16) 

we obtain, from (3.15), the following closed equation for 02(z1,z2) : 

o* (XI, 12) = ‘Jo (51) 0 (z,, 51) 1- jS (q - s’).P”.i?* (5’. x2). <V (x1; x’) I x1, +dx’ (3.17) 

where @(x,,J~) is the solution of (3.14). The route for constructing further approximations 
for ?(z1,x2) following the approach given above, is obvious. 

Let us now pass to computing the statistical moments of the fields n(x) and E(I) in an 
inhomogeneous medium. If the field 3(z) is approximated by a constant in every inclusion, 
then the expressions (1.3), (1.4) for O(Z) and E(Z) will become, by virtue of (2.5) and (2.71, 

u (5) = u, (z) + j S (5 - s’).P” (x’).Ti (2’) V (5’) ds’ (3.18) 

E (J) = s0 (zc) + j K (I - 5’) .c,.P” (x’).ii (x’) V (x’) dx’ 
(3.191 

Averaging these relations overthe ensembleofthe randomsetof inclusions and remembering that 
by virtue of the hypothesis H, 

we obtain 

P" (s').a (z') V (x')) = (P" (5') v (z')).zJ (5') = pP".$ (5') 
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<‘J(x)> = u,,(s)+p~S(x- x').P".O'(s')dx' 

<E (4> = %l(z) + p SK (5 - z’).c,.P”.6’(2’) &z 

Next we write the expression for the second moment of the field a(Z) in a composite medium, 
in terms of the conditional moments of the effective field. From (3.18) we have 

(o"(sl)o@(sl)> = W(51)uo~(rz)+ !3.211 

PSS=+I - 5') P;~a~~(s')dz'uo~(22) + 

PUP (XI) s s@L(zz - x') P;JS‘(x’)dx’ + 

S S=" (21 - 2') P;v dx’ 5 SfJr (x2 - x”) P;$ZVP (I’, 5”) x 

(V (x’) v (z”)) dx 

where we used the hypothesis H, of Sect.2. Similarly, the second moment of the random field 
e (5) can be expressed in terms of the first two conditional moments of the effective field. 
Thus in order to find the first two statistical moments of the fields o(z) and e(z) in a 

composite medium, we must solve the equations of the type (3.10), (3.17) for ~1 and 02 and 
compute the integrals in (3.20) and (3.21). The scheme can also be used for computing higher 
order moments of the fields u (5) and e(z). 

4. Operator of effective properties. We introduce the operator C, connectingthe 
mathematical expectations of the flux density and field strength tensors in a compositemedium 

0* (I) = (C*Ef) (r), e* (x) = (0 (I)>, a* (.z) = <e(z)) (4.1) 

From (3.20) and (3.11) it follows that the pseudodifferential operator C, has the form 

c* (k) = (i + ps @).?.A (k)).(B, + pK (k).c,.PO.A (k))-’ (B, = co-J) (4.2) 

In the general case the relation connecting o* with E* will be nonlocal, since C,;s a contrac- 

tion operator with generalized function C,(Z) which has a singular and a regular term. The 

case of a homogeneous external field o, represents an exception. From (3.11), (3.12) it fol- 

lows that the operator A represents a multiplication by a constant tensor 

A, = [i - $S @)I# (I) dz,PJ-' (4.5) 

For an isotropic set of inclusions we have \p(z)=~#(jzl) , and in this case the Lrtegral cdl! 
be written, with help of (1.8) and regularization of the generalized function S(I) /9,10/, in 

the form \S (z)$(z)dz = - pD, 

where the constant tensor D, has the form (2.9) when IQ= 1.. From (3.20) and (1.t;: it follows 

thatforaconstantextemal fieldo*and e l the constant tensors are connected by the relation 

a' = C,.e', c,-'= B, fpPO.(l +pD,.Py (4.43 

where C, is the tensor of effective constants of the composite medium. An analogous expres- 

sion was obtained for C, in /5/ for the case of an elastic problem (tensor of effectivemodulr 

of elasticity of the composite medium), and particular forms of this expression were obtained 

in /1,3,4/. The effective moduli of elasticity of a medium with a random set of cracks were 

obtained using the proposed scheme in /2-4.7/ and the effective electric conductivity coef- 

ficients in /14/. 
Let us expand the right-hand side of the expansion (4.2) for C,(k) into a series in terms 

of the concentration of inclusions p. Restricting ourselves to terms of order ~5 P2. we 

have 
c, (k) = c0 - pc,.P~.c, +p%,.Po.(CO + T (k)).PO.c, + (4.5) 

T (k) = 5 .S (2) (1 - p-‘\lr (2)) enp [i (k.x)] dz 

For $(z)given by (3.6) the function 

T (k) = i s (2) exp [ - !$ + i (k.+) ’ dz 

It can be shown that function T(k) is analytic in the neignborhood of zero, and the first 

terms of its expansion in a power series have the form 

Tap (k) = D;@ + ‘/apa (Df%,, - 3Il$) (rk+ (rkw) + . ( 4 . b ; 

where the tensors D, and II, are given by (2.9) and (2.12), respectively, for 0, 1. In the 

first approximation (for sufficiently smooth external fields) the symbol C, (k)car;ze approxi- 
mated by the expression (4.5) with T(k)of the form (4.6). We introduce the aver-.qed fielc: 
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potential u* in an inhomogeneous medium, ,connected with the tensor e* (3) by the relation 

E* (I) = vu* (I). From (4.1), (4.2) we obtain the following expression for the potential u* (=) : 

div (C,Vu*)= 9 (4.7) 

where C, is a pseudodifferential operator defined by (4.2). Since the operator C, isnonlocal, 

the potential u* described a field in a certain homogeneous medium with spatial dispersion. 

This medium replace the real inhomogeneous material in the Course of computing the meanvalues 

of the functions O(z) and E(Z) over the given external field. 

If we approximate the operator &with the expressions (4.5) and (4.6), then (4.7) will 

become a partial differential equation in II*(I). For a composite material consisting of an 

isotropic matrix and isotropic spherical inclusions, the equation will become (A is the 

Laplace operator and c*~.c*~ are scalar coefficients) 

(4.8) 

In the case of the elastic problem, an analogous expression for the averaged displacement 

vector will basically coincide with the system of equations of the couple stress theory of 

elasticity for a medium with restricted rotation /15/. The part of the parameter with dimen- 

sion of length which is characteristic for the couple stress theory, is played in this case 

by the correlation radius P of the random set of inclusions. We note that the previous ex- 

pressions for C, did not include another characteristic parameter of the problem, namely the 

meansize of the inclusions. The dependence of C, on this parameter can be established by 

realizing the proposed scheme for constructing the operator C, with help of the first order 

equation (2.15) for effective field. In this case the analog of the expansion (4.5), (4.6) 

for C,(k) will assume, in the caseofan isotropic matrix and isotropic (spherical) inclusions, 

the form 

c*.' (k2@ + 3 (ika) (‘kB)) 

where the coefficient c,l coincides with that given by (4.8) and cIL depends on two dimension- 

al parameters, namely on the correlation radius p of the random set of inclusions and their 

mean radius a 

Let us note the principal characteristic features of the method. The method falls be- 
tween the _self-consistent_field (SCF) method and the smoothing method /16/. The proposed 
method and one of the more widely used variants of SCF both introduce a local external field 

5 for every inclusion and assume that the field has the same structure over the regions Vh- 

(hypothesis ff,). However, in the traditional SCF method the field B is assumed constant and 
equal for all inclusions. In the present method the field c can: lo- be chosen differing from 
the constant value in the regions Vk and, 2O- it can be assumed to vary randomly from one 
inclusion to the next. Moreover, in constructing the closed equations for the statistical 

moments B (2) we use a procedure consisting of disconnecting the complex averages, which is 
associated with the smoothing method. Conceptually, the present method resembles that used 
in /12,13,17/ for solving a stationary problem of scattering scalar waves by point scatterers. 

The error incurred in the first approximation of the method in the problem of computing 

the effective constants for inhomogeneous materials was investigated in /5,6,7/ by comparing 

them with experimental dataandexact solutions obtained for regular composites. The compari- 
son shows that the proposed method yields correct values for the effective constants of the 

composites over a wide range of variation in the concentration, form and the properties of 
the inclusions. The possibilities offered by the method are still not completely exhausted. 

The method can be used to obtain quantitative descriptions of the nonlocal properties of a 
composite material and to find the expressions for the statistical moments for solutions of, 
generally speaking, any order. 
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